- जटिल संख्या के गुण
- जटिल संख्याओं का प्रतिनिधित्व
- - द्विपद रूप
- - ध्रुवीय आकार
- जटिल संख्या के उदाहरण
- यह किस लिए हैं?
- जटिल संख्या संचालन
- - उदाहरण 1
- उपाय
- - उदाहरण २
- उपाय
- आवेदन
- संदर्भ
जटिल संख्याओं संख्यात्मक वास्तविक संख्या और नकारात्मक संख्या के जोड़े जड़ों सहित बहुआयामी पद के सभी जड़ों को कवर सेट कर रहे हैं। ये जड़ें वास्तविक संख्याओं के समूह में मौजूद नहीं हैं, लेकिन जटिल संख्याओं में इसका समाधान है।
एक जटिल संख्या में एक वास्तविक भाग होता है और एक भाग जिसे "काल्पनिक" कहा जाता है। वास्तविक भाग को a और b वास्तविक संख्याओं के साथ और उदाहरण के लिए काल्पनिक भाग ib कहा जाता है, काल्पनिक इकाई के रूप में "i"। इस तरह जटिल संख्या रूप लेती है:
चित्रा 1.- वास्तविक भाग और काल्पनिक भाग के संदर्भ में एक जटिल संख्या का द्विपद प्रतिनिधित्व। स्रोत: पिक्साबे
जटिल संख्याओं के उदाहरण हैं 2 - 3i,-,i, 1 + (1/2) i। लेकिन उनके साथ काम करने से पहले, आइए देखें कि मैं इस काल्पनिक समीकरण को देखते हुए काल्पनिक इकाई की उत्पत्ति कहां से करता हूं:
x 2 - 10x + 34 = 0
जिसमें एक = 1, बी = -10 और सी = 34।
समाधान का निर्धारण करने के लिए समाधान सूत्र को लागू करते समय, हम निम्नलिखित पाते हैं:
√-36 का मान कैसे निर्धारित करें? कोई वास्तविक संख्या नहीं है जो चुकता एक नकारात्मक मात्रा पैदा करता है। तब यह निष्कर्ष निकाला जाता है कि इस समीकरण का कोई वास्तविक समाधान नहीं है।
हालाँकि, हम इसे लिख सकते हैं:
√-36 = √-6 2 = 26 2 (-1) = 6 1-1
यदि हम एक निश्चित मान x को परिभाषित करते हैं जैसे:
x 2 = -1
इसलिए:
x = √ =-1
और उपरोक्त समीकरण में एक समाधान होगा। इसलिए, काल्पनिक इकाई को इस प्रकार परिभाषित किया गया था:
i = 1-1
इसलिए:
6-36 = 6i
प्राचीन काल के कई गणितज्ञों ने इसी तरह की समस्याओं को हल करने पर काम किया, विशेष रूप से पुनर्जागरण गिरोलमो कार्डानो (1501-1576), निकोलो फोंटाना (1501-1557) और राफेल बॉम्बेली (1526-1572)।
वर्षों बाद रेने डेकार्टेस (1596-1650) ने उदाहरण में ”-36 जैसी मात्राओं को" काल्पनिक "कहा। इस कारण unit-1 को काल्पनिक इकाई के रूप में जाना जाता है।
जटिल संख्या के गुण
-कम्पलेक्स नंबरों के सेट को C के रूप में दर्शाया गया है और इसमें वास्तविक संख्या R और काल्पनिक संख्या Im शामिल हैं। संख्या सेट का प्रतिनिधित्व वेन आरेख में किया जाता है, जैसा कि निम्नलिखित आकृति में दिखाया गया है:
चित्रा 2. संख्या सेट के आरेख। स्रोत: एफ। ज़पाटा
-सभी जटिल संख्या में एक वास्तविक भाग और एक काल्पनिक भाग होता है।
-जब किसी जटिल संख्या का काल्पनिक भाग 0 होता है, तो वह शुद्ध वास्तविक संख्या होती है।
-यदि किसी जटिल संख्या का वास्तविक भाग 0 है, तो संख्या शुद्ध काल्पनिक है।
-तो जटिल संख्या समान होती है यदि उनका संबंधित वास्तविक भाग और काल्पनिक भाग समान हो।
जटिल संख्याओं के अलावा, जोड़, घटाव, गुणा, उत्पाद और वृद्धि के ज्ञात संचालन किए जाते हैं, जिसके परिणामस्वरूप एक और जटिल संख्या होती है।
जटिल संख्याओं का प्रतिनिधित्व
विभिन्न तरीकों से जटिल संख्याओं का प्रतिनिधित्व किया जा सकता है। यहाँ मुख्य हैं:
- द्विपद रूप
यह शुरुआत में दिया गया रूप है, जहाँ z जटिल संख्या है, वास्तविक भाग है, b काल्पनिक भाग है और मैं काल्पनिक इकाई है:
या यह भी:
जटिल संख्या को ग्राफ करने का एक तरीका इस आंकड़े में दिखाए गए जटिल विमान के माध्यम से है। काल्पनिक अक्ष Im ऊर्ध्वाधर है, जबकि वास्तविक अक्ष क्षैतिज है और इसे Re के रूप में निरूपित किया जाता है।
इस विमान में जटिल संख्या z को निर्देशांक (x, y) या (a, b) के बिंदु के रूप में दर्शाया गया है, क्योंकि यह वास्तविक विमान के बिंदुओं के साथ किया जाता है।
मूल से बिंदु z की दूरी, जटिल संख्या का मापांक है, जिसे r के रूप में निरूपित किया जाता है, जबकि φ वह कोण है जो r वास्तविक अक्ष के साथ बनाता है।
चित्रा 3. जटिल विमान में एक जटिल संख्या का प्रतिनिधित्व। स्रोत: विकिमीडिया कॉमन्स
यह प्रतिनिधित्व वास्तविक विमान में वैक्टर के साथ निकटता से संबंधित है। R का मान जटिल संख्या के मापांक से मेल खाता है।
- ध्रुवीय आकार
ध्रुवीय रूप में r और φ के मान देकर जटिल संख्या को व्यक्त करना शामिल है। यदि हम आकृति को देखते हैं, तो r का मान एक सही त्रिभुज के कर्ण से मेल खाता है। पैर एक और बी, या एक्स और वाई के लायक हैं।
द्विपद या द्विपद रूप से, हम ध्रुवीय रूप में जा सकते हैं:
कोण with क्षैतिज अक्ष या काल्पनिक अक्ष के साथ खंड r द्वारा गठित एक है। इसे जटिल संख्या तर्क के रूप में जाना जाता है। इस तरह:
तर्क में अनंत मूल्य हैं, यह ध्यान में रखते हुए कि हर बार एक मोड़ चालू होता है, जिसकी कीमत 2 inf रेडियन होती है, आर फिर से उसी स्थिति पर कब्जा कर लेता है। इस प्रकार, सामान्य रूप से, आर्ग (z) को निरूपित z के तर्क के रूप में व्यक्त किया जाता है
जहां k एक पूर्णांक है और इसका उपयोग टर्न की संख्या इंगित करने के लिए किया जाता है: 2, 3, 4…। संकेत रोटेशन की दिशा को इंगित करता है, अगर यह दक्षिणावर्त या वामावर्त है।
चित्रा 4. जटिल विमान में एक जटिल संख्या का ध्रुवीय प्रतिनिधित्व। स्रोत: विकिमीडिया कॉमन्स
और यदि हम ध्रुवीय रूप से द्विपद रूप में जाना चाहते हैं, तो हम त्रिकोणमितीय अनुपात का उपयोग करते हैं। पिछले आंकड़े से हम देख सकते हैं कि:
x = r cos φ
y = r पाप =
इस तरह z = r (cos φ + i sin r)
जो इस तरह संक्षिप्त है:
z = r सिस φ
जटिल संख्या के उदाहरण
निम्नलिखित जटिल संख्याएँ द्विपद रूप में दी गई हैं:
a) 3 + i
बी 4
d) -6i
और ये एक आदेशित जोड़ी के रूप में हैं:
a) (-5, -3)
बी) (0, 9)
c) (7.0)
अंत में, इस समूह को ध्रुवीय या त्रिकोणमितीय रूप में दिया गया है:
a) c2 सीआईएस 45º
बी) √3 सीआईएस 30º
c) 2 सीआईएस 315º
यह किस लिए हैं?
जटिल संख्याओं की उपयोगिता शुरुआत में दिखाए गए द्विघात समीकरण को हल करने से परे है, क्योंकि वे विशेष रूप से इंजीनियरिंग और भौतिकी के क्षेत्र में आवश्यक हैं:
-विद्युत चुम्बकीय तरंगों का अध्ययन
प्रत्यावर्ती धारा और वोल्टेज के -एनलिसिस
-सभी प्रकार के संकेतों का मॉडलिंग
-सापेक्षता का सिद्धांत, जहां समय को काल्पनिक परिमाण के रूप में ग्रहण किया जाता है।
जटिल संख्या संचालन
जटिल संख्याओं के साथ हम सभी ऑपरेशन कर सकते हैं जो वास्तविक लोगों के साथ किए जाते हैं। कुछ करने के लिए आसान है अगर संख्याएँ द्विपद रूप में आती हैं, जैसे कि जोड़ और घटाव। इसके विपरीत, गुणन और विभाजन सरल होते हैं यदि उन्हें ध्रुवीय रूप के साथ किया जाता है।
आइए देखते हैं कुछ उदाहरण:
- उदाहरण 1
Z 1 = 2 + 5i और z 2 = -3 -8 जोड़ें
उपाय
वास्तविक भागों को काल्पनिक भागों से अलग से जोड़ा गया है:
z 1 + z 2 = (2 + 5i) + (-3 -8i) = -1 -3i
- उदाहरण २
गुणा 1 z = 4 cis 45º और z 2 = 5 cis 120 =
उपाय
यह दिखाया जा सकता है कि ध्रुवीय या त्रिकोणमितीय रूप में दो जटिल संख्याओं का गुणन किसके द्वारा दिया जाता है:
z १ । z 2 = r 1.r 2 सीआईएस (φ 1 +। 2)
इसके अनुसार:
z १ । z 2 = (4 × 5) सीआईएस (45 + 120) = 20 सीआईएस 165 (
आवेदन
जटिल संख्याओं का एक सरल अनुप्रयोग बहुपद समीकरण की सभी जड़ों को खोजना है जैसे कि लेख की शुरुआत में दिखाया गया है।
समीकरण x 2 - 10x + 34 = 0 के मामले में, हमारे द्वारा प्राप्त होने वाले रिज़ॉल्यूशन सूत्र को लागू करना:
इसलिए समाधान हैं:
x 1 = 5 + 3i
x 2 = 5 - 3 आई
संदर्भ
- अर्ल, आर। कॉम्प्लेक्स नंबर। से पुनर्प्राप्त: maths.ox.ac.uk।
- फिगुएरा, जे। 2000. गणित प्रथम। विविध। CO-BO संस्करण
- हॉफमैन, जे। 2005. गणित विषयों का चयन। एकांत प्रकाशन।
- जिमेनेज, आर। 2008. बीजगणित। शागिर्द कक्ष।
- विकिपीडिया। जटिल आंकड़े। से पुनर्प्राप्त: en.wikipedia.org